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Abstract
Cloud infrastructures provide a rich set of management tasks
that operate computing, storage, and networking resources
in the cloud. Monitoring the executions of these tasks is
crucial for cloud providers to promptly find and understand
problems that compromise cloud availability. However, such
monitoring is challenging because there are multiple dis-
tributed service components involved in the executions.

CloudSeer enables effective workflow monitoring. It
takes a lightweight non-intrusive approach that purely works
on interleaved logs widely existing in cloud infrastructures.
CloudSeer first builds an automaton for the workflow of
each management task based on normal executions, and
then it checks log messages against a set of automata for
workflow divergences in a streaming manner. Divergences
found during the checking process indicate potential execu-
tion problems, which may or may not be accompanied by
error log messages. For each potential problem, CloudSeer
outputs necessary context information including the affected
task automaton and related log messages hinting where the
problem occurs to help further diagnosis. Our experiments
on OpenStack, a popular open-source cloud infrastructure,
show that CloudSeer’s efficiency and problem-detection
capability are suitable for online monitoring.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging—Debugging aids, Dis-
tributed debugging, Monitors; D.4.5 [Operating Systems]:
Reliability; D.4.8 [Operating Systems]: Performance

Keywords Cloud Infrastructures; Distributed Systems; Log
Analysis; Workflow Monitoring
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1. Introduction
With the fast growth of the global cloud-computing mar-
ket, many dedicated software infrastructures have emerged
to provide convenient access to cloud-based computing, stor-
age, and networking resources. For example, Amazon Elas-
tic Compute Cloud (EC2) [3] and Microsoft Azure [10]
are two widely used public cloud infrastructures that enable
users to easily create computing platforms in the cloud with
multiple servers and configurable resources. In the open-
source community, OpenStack [11] has been gaining pop-
ularity steadily in recent years [1].

Cloud infrastructures provide access to cloud resources
via a series of management tasks, e.g., tasks enabling users
to spawn virtual machines (VMs), stop VMs, and delete
VMs. To execute a task, cloud infrastructures coordinate
multiple internal service processes distributed on different
server nodes, each of which takes part in the whole exe-
cution (e.g., a scheduler to assign VMs to different nodes
and hypervisors on assigned nodes to boot up VMs). The
distributed and multi-process nature of task executions in-
troduces extra complexity and non-determinism, which can
sometimes result in subtle problems.

From the perspective of cloud providers, monitoring is
an important way to help the identification and diagnosis of
execution problems that compromise cloud availability. The
provider-side administrators expect to know through moni-
toring if each task execution completes successfully and in
time. When execution problems occur, administrators also
expect enough information from monitoring that can guide
the diagnosis. However, cloud infrastructures usually do not
expose enough execution details. De facto practices include
checking the outcomes of test requests [8] and monitoring
running statuses of service processes and resource usages to
detect abnormalities. Unfortunately, test requests may fail to
exercise and expose problems in specific problematic exe-
cution paths, and resource usages may not reveal problems
that do not cause usage irregularities (e.g., expected inter-



service messages not sent or received). As a result, revealing
internal execution steps across service processes for direct
monitoring in the workflow level is challenging.

Monitoring logs is another common practice to find and
diagnose problems. For example, Amazon CloudWatch [2]
provides a log-streaming interface for real-time log monitor-
ing on VM instances. There are also open-source projects,
such as Logstash [9], to support a similar feature for central-
izing distributed logs from multiple server nodes to a sin-
gle location. However, it is tedious and labor-intensive to
manually monitor and understand numerous distributed and
interleaved log messages by human effort. In a real-world
banking system, that some of the authors had experiences
with, there were 200 full-time operators dedicated to 24x7
log monitoring with 67 screens for 190 subsystems.

To facilitate monitoring through logs, we present a non-
intrusive lightweight approach for workflow monitoring. Our
prototype for OpenStack, CloudSeer, purely works on logs
that are readily available in existing cloud infrastructures.
CloudSeer is backed by the observations that logging is a
general practice for complex software systems and logs im-
plicitly carry workflow information. In these logs, not only
error messages, but also sequence-based information, can
help monitor and discover execution problems. To enable
log-based workflow monitoring, CloudSeer addresses the
following key challenges.

Working with interleaved log sequences. When a cloud
infrastructure is executing multiple tasks in parallel, log
messages from different executions are usually interleaved
in log files. Even in a single execution, asynchronous opera-
tions among different services can interleave log messages in
different ways. To recover workflow information, it is neces-
sary, but not straightforward, to identify the correspondence
between log messages and task executions. Some existing
work [18] assumes that messages have unique request and
thread identifiers, which can distinguish messages from dif-
ferent task executions. However, such an assumption does
not always hold. While working with OpenStack, we found
that there could be multiple non-unique identifiers repre-
senting different entities (e.g., VMs, physical machines, and
networks) in different log messages. Only the combinations
of some identifiers may identify sequences of log messages
that belong to different task executions.

Working in an online scenario. The sooner a problem
is noticed, the quicker can it be fixed and the more can its
effects be mitigated. Existing work [21, 24, 29] on detecting
problems using data mining and clustering on logs can only
operate in an offline manner, since they require task or pro-
gram executions to finish so that logs are available in their
entirety beforehand. Such a design delays problem detection
and is more problematic if the executions may not finish at
all. In the monitoring scenario, the detection of execution
problems should be quick without the need to wait for the
tasks to finish.

Detecting problems without explicit error messages.
Execution problems can manifest in different forms. Some
of them may not be easily noticeable, e.g., performance
degradation and silent failures that do not come with ex-
plicit error messages. From the logging practices in Open-
Stack [11], we found that failures were not always accompa-
nied with indicative error messages. A recent study [31] on
logging practice also reports that over half of the studied fail-
ures were not properly logged. Thus, only looking for error
messages might not reveal subtle execution problems.

Providing workflow information. As a monitoring ap-
proach, just reporting a failure is not enough for adminis-
trators to diagnose the failure and take further actions. The
context of a failure, particularly, workflow [14, 23], is use-
ful for guiding administrators to narrow down and isolate
possible causes. A monitoring approach should leverage log
messages to include such information in failure reports.

CloudSeer addresses these challenges by combining an
offline modeling stage (Section 3) and an online checking
stage (Section 4). In the offline modeling stage, CloudSeer
builds an automaton for each task via the logs generated by
multiple correct executions. The result automaton depicts the
task workflow, in which state transitions capture temporal
dependencies between log messages. We introduce this au-
tomaton to serve two roles. CloudSeer uses it as a specifi-
cation to identify log sequences in the online checking stage.
The automaton is also a bookkeeper to keep track of the
execution progress or context on-the-fly by maintaining au-
tomaton states. The bookkeeping enables the automaton to
be used as an informative output that provides context infor-
mation when CloudSeer detects a potential problem.

In the online checking stage, CloudSeer works on a
log stream that consists of interleaved log messages from
distributed services. It uses the pre-built automata to identify
individual log sequences out of interleaved ones, and check
them for divergences that may indicate execution problems.

We define two divergence criteria for two symptoms of
execution problems: (1) error messages and (2) expected log
messages not appearing within a time interval. While the first
case is straightforward as it represents failures that are prop-
erly caught and handled by a system, the second case indi-
cates unhandled silent failures that are not accompanied by
error messages (e.g., when a key service stops responding)
or performance degradation. In this paper, we do not distin-
guish between silent failures and performance degradation.
Our goal is to show that CloudSeer is capable of detecting
different kinds of execution problems, rather than directly
identifying the root causes of the detected problems.

To ensure efficiency for monitoring via interleaved logs,
we design effective heuristics that leverage non-unique mes-
sage identifiers to group related log messages into growing
sequences on-the-fly. Based on the heuristics, CloudSeer
associates a limited number of automaton instances with
each sequence and checks if the sequence followed by a
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Figure 1. Inter-service interactions when booting a VM

new message still conforms with its associated automaton
instances. As a result, CloudSeer is able to avoid the brute-
force checking on each message against all automaton in-
stances, thus significantly reducing performance overhead.

During the checking process, CloudSeer marks and re-
ports automaton instances that satisfy the divergence criteria.
The reported instances provide workflow information about
the task and the step within the task where the problem is
occurring. Administrators can then use the provided infor-
mation to understand and mitigate ongoing problems.

We evaluate CloudSeer by a series of experiments on
primitive VM tasks of OpenStack (Section 5). The ex-
periments evaluate how accurate and efficient CloudSeer
checks interleaved log sequences and its capability of detect-
ing some injected common problems. The results show that
the checking accuracy of CloudSeer is at least 92.08% on
interleaved logs, with a satisfactory efficiency (an average of
2.36s/1k-messages in our test bed), making it suitable for the
monitoring scenario. The results further show CloudSeer’s
problem-detection capability with a precision of 83.08% and
a recall of 90.00% on the injected problems.

2. Overview
We start with a general description about a representative
cloud infrastructure, OpenStack, and a common set of log-
ging characteristics that exist in similar systems. Then, we
use examples based on OpenStack to briefly describe how
CloudSeer monitors task executions through logs.

2.1 Cloud-Infrastructure Example: OpenStack
OpenStack is an open-source cloud-infrastructure platform.
It consists of multiple service components that manage com-
puting, storage, and networking resources in the cloud. For
example, the component nova provides a set of tasks to man-
age VMs. Cloud users can issue task commands, e.g., “nova
boot” and “nova stop” from the command-line interface
(CLI) to boot up and stop VMs.

The execution of a task involves coordination between
multiple service components. Figure 1 depicts how service
components interact during the booting of a VM. When a
user executes a task with the “nova boot” command, a re-
quest is sent to nova-api, which is a web service built us-
ing Web Server Gateway Interface (WSGI). The authentica-

tion service, keystone, authenticates the incoming request.
If authenticated, the scheduling service, nova-scheduler,
selects a compute server on which to boot up a new VM.
The compute service, nova-compute, running on the com-
pute server, obtains the appropriate VM image from glance,
which provides VM images. The VM hypervisor then takes
over the request from nova-compute to launch the VM. The
proxy service, nova-conductor, records states of VMs in
the database and manages remote procedure calls (RPCs)
across service boundaries using Advanced Message Queu-
ing Protocol (AMQP).

2.2 Logging Characteristics
We are aware of two logging characteristics that make the
log-based workflow monitoring not straightforward. The two
characteristics are the manifestation of a set of underlying
system behaviors, which are common in similar systems and
not specific to OpenStack examples.

First, besides the message interleaving caused by simul-
taneous task executions, log messages from the same exe-
cution might also be interleaved. This is caused by asyn-
chronous operations (e.g., AMQP communications in Open-
Stack), which create multiple execution paths through dif-
ferent service processes. As a result, log messages from dif-
ferent paths could be interleaved without a fixed ordering,
making task workflows more complicated to monitor.

Second, there is often no single and unique identifier
associated with log messages related to a task execution.
In cloud infrastructures, each service manages its own re-
sources (e.g., users, VMs, and images are managed by dif-
ferent services) and logs them with identifiers based on re-
source types. Those identifiers may not be propagated across
different services during a task execution, because different
services do not share the knowledge on different resources.
For instance, a hypervisor knows which VM is running, but
it has no knowledge about the user whom the VM belongs
to. Consequently, different log messages may not share com-
mon identifiers.

We use an example in OpenStack to further illustrate the
two characteristics. Figure 2 shows simplified log messages
for two executions of the “nova boot” task. To ease the ex-
planation, we simplify messages by substituting timestamps
with numbers at the beginning of the messages, remov-



(1) api accepted IP1

(2) api accepted IP2

(3) api [UUID1 ] IP1 "POST /UUID2 /servers"

(4) api [UUID3 ] IP2 "POST /UUID4 /servers"

(5) scheduler [UUID1 ] Scheduling instance UUID5.

(6) scheduler [UUID3 ] Scheduling instance UUID6.

(7) api [UUID3 ] IP2 "GET /UUID4 /servers/UUID6 "

(8) compute [UUID1 ] Starting instance UUID5.

(9) api [UUID1 ] IP1 "GET /UUID2 /servers/UUID5 "

(10) compute [UUID3 ] Starting instance UUID6.

(11) compute Instance UUID5 spawned successfully.

(12) compute Instance UUID6 spawned successfully.

Figure 2. Simplified Log Sequences for Booting VMs in
OpenStack

ing logging levels, replacing identifiers (IPs, URLs, UUIDs,
etc.) with simple text (e.g., replace the actual IP address with
just IP1), and shortening text in the messages (e.g., api for
nova-api). The identifiers in log messages indicate differ-
ent resources, e.g., the identifiers in square brackets indicate
users who initiate the tasks, the identifiers preceded by the
text “Instance” indicate VMs, and the identifiers in the
message bodies may indicate tenants or VMs.

In Figure 2, there are two interleaved log sequences,
1 → 3 → 5 → 8 → 9 → 11 and 2 → 4 → 6 →
7 → 10 → 12. Messages 8 → 9 in the first sequence
and 7 → 10 in the second one show two different order-
ings for one pair of log messages. This is because the ser-
vice nova-scheduler, which generates messages 5 and 6,
uses asynchronous AMQP communications to schedule VM
instances UUID5 and UUID6 to compute nodes. Such asyn-
chronicity causes nova-api (generating messages 7 and 9)
and nova-compute (generating messages 8 and 10) to exe-
cute their parts of the task in parallel, resulting in two possi-
ble orderings.

It is also noticeable how diversified the log identifiers are.
For instance, messages 1 and 5 from the same sequence do
not have any common identifiers. On the other hand, many
a time some messages can connect other seemingly discon-
nected ones. For instance, message 3 shares IP1 and UUID1
with messages 1 and 5, respectively. It can effectively estab-
lish the relation between messages 1 and 5. This observation
suggests that shared identifiers, regardless of how far they
are propagated across services, can create a chain that tran-
sitively connects messages together. This observation thus
enables a heuristic that separates interleaved log sequences.

2.3 Demonstration of CloudSeer
We show the basic idea of CloudSeer using the exam-

ple in Figure 2. We assume that we have already built a task
automaton using logs collected from multiple normal execu-
tions of booting VMs. Figure 3 shows the automaton for the
“nova boot” task, and it is simplified accordingly as what
we have done for the log sequence in Figure 2. Section 3
describes the modeling step in detail.

The Task Automaton. The automaton in Figure 3 rep-
resents the booting-VM workflow by encoding the depen-
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Figure 3. The Automaton for Booting a VM

dencies among log messages. The automaton takes message
templates as inputs. The message templates are log messages
without variable parts. Determining the variable parts re-
quires certain domain knowledge. We consider IP addresses,
UUIDs, and numbers as the variable parts in log messages.

To model interleaved messages caused by asynchronous
operations, we introduce two special types of states in addi-
tion to the conventional automaton states: the fork states (q3
in Figure 3) and the join states (q6). A fork state has multi-
ple outbound transitions for log messages that do not have
dependencies with each other but share the same precedent,
and each outbound transition transits to a new state from the
fork state (e.g., q4 and q5 are forked from q3 after consum-
ing the messages “GET” and “Starting”). A join state has
multiple inbound transitions for a log message that must al-
ways be followed by some other messages, and all inbound
transitions transit to the same join state (e.g., q4 and q5 join
to q6 after consuming the message “Spawned”).

Checking Interleaved Sequences. CloudSeer takes one
log message at a time. It checks if the message belongs
to a growing log sequence and if the growing sequence
with the new message still conforms with its corresponding
automaton. This checking process continues until a message
completes a sequence or satisfies divergence criteria.

To leverage multiple identifiers to determine the as-
sociation of a message with a developing log sequence,
CloudSeer uses a data structure, identifier set, as the signa-
ture of each log sequence. An identifier set stores identifiers
appearing in all messages of a sequence.

Table 1 shows the process of CloudSeer checking log
messages. The column “Identifier Set” presents the identi-
fier set after processing the corresponding message shown
in the column “Message.” Due to space limit, we use the
symbol UUID1/2 to represent UUID1 and UUID2 in the
column “Identifier Set.” The column “Instance Transition”
shows the state transitions of automaton instances. The label
before each identifier set and state transition indicates the log
sequence under checking.

CloudSeer considers messages 1 and 2 to be the begin-
ning of two new sequences because their identifier sets do



Message Identifier Set Instance Transition
(1) Accepted 1: {IP1} 1: {q0} → {q1}
(2) Accepted 2: {IP2} 2: {q0} → {q1}
(3) POST 1: {IP1, UUID1/2} 1: {q1} → {q2}
(4) POST 2: {IP2, UUID3/4} 2: {q1} → {q2}
(5) Scheduling 1: {IP1, UUID1/2/5} 1: {q2} → {q3}
(6) Scheduling 2: {IP2, UUID3/4/6} 2: {q2} → {q3}
(7) GET 2: {IP2, UUID3/4/6} 2: {q3} → {q3, q4}
(8) Starting 1: {IP1, UUID1/2/5} 1: {q3} → {q3, q5}
(9) GET 1: {IP1, UUID1/2/5} 1: {q3, q5} → {q4, q5}
(10) Starting 2: {IP2, UUID3/4/6} 2: {q3, q4} → {q4, q5}
(11) Spawned 1: {IP1, UUID1/2/5} 1: {q4, q5} → {q6}
(12) Spawned 2: {IP2, UUID3/4/6} 2: {q4, q5} → {q6}

Table 1. Demonstration of Checking Process

not have any common element. Therefore, CloudSeer cre-
ates a new identifier set and a new automaton instance for
each of these two messages.

The identifiers in message 3 have a common element with
the identifier set of the first sequence ({IP1}) only. There-
fore, CloudSeer associates the message with the sequence
“1.” It then tests if the message causes the corresponding
automaton instance to make a state transition. As the tran-
sition happens, CloudSeer extends the identifier set of the
sequence with the UUIDs in the message. When message
4 arrives, CloudSeer associates the message with sequence
“2” since the IP address IP2 appears in the current iden-
tifier set for that sequence. For the rest of the messages,
CloudSeer repeats this checking process until the two au-
tomaton instances accept their log sequences.

Interpreting Results. When an incoming message, or
lack thereof, satisfies divergence criteria, CloudSeer is able
to report the diverged automaton instance indicating a prob-
lematic execution. For investigation, the diverged instance
provides useful information that includes the ongoing task
with its normal workflow, and the execution point where the
problem occurs in the form of the current automaton state(s)
and all log messages consumed so far.

For example, in Figure 2, if a problem occurs in the com-
pute node assigned to run the VM UUID5, the message 8 or
11 may not appear. Such a case is detectable by a “timeout”
criterion that specifies a time period in which an automa-
ton instance must consume a message. CloudSeer would
then report an instance with the states {q3, q4} or {q4, q5},
depending on if the message 8 has appeared. Then, a knowl-
edgeable administrator may quickly narrow down the prob-
lem to immediately before booting the VM (if {q3, q4}, net-
work could be the main cause) or during the booting process
(if {q4, q5}, I/O or hypervisor could be the main cause).

3. Modeling Task-Based Log Sequences
The offline modeling process creates automata from logs
generated by correct task executions. CloudSeer uses the
output automata to check interleaved logs in the online sce-
nario. For each task to model, the modeling process takes log
sequences from multiple executions of the task. The term log

sequence denotes all log messages ordered by their times-
tamps (or in the order they arrive) from a single execution.
Since asynchronous operations among services may cause
some messages to be interleaved in different ways, using
multiple log sequences of a task helps the modeling process
reconstruct temporal dependencies, which describe the order
relation of log messages to represent the task workflow.

The modeling process consists of three steps: (1) pre-
processing log sequences to extract key log messages for
the task workflow; (2) mining temporal dependencies in the
preprocessed log sequences; and (3) constructing automata
from the mined temporal dependencies.

3.1 Preprocessing
The preprocessing step takes log sequences as input. A log
sequence LS is a vector of log messages 〈m1,m2, ...,mn〉.
Each log message mi in LS has two attributes: a template t
representing the constant text of mi, and a value set Sv con-
taining values in the variable parts of mi. There are different
ways to determine the template t and the value set Sv of a
log message m, and we consider numbers, IP addresses, and
UUIDs as variable parts, where UUID is in the form of a
well-formatted string. We use regular expressions to match
and extract them to create m.Sv , and m.t is naturally the part
of m after the extraction.

For a set of log sequences SLS collected from multiple
executions of a task, the preprocessing step keeps key log
messages in each log sequence of SLS and removes all
other messages which are considered less relevant to the task
workflow. To determine if a log message m is a key message,
this step counts the appearance of m.t in each log sequence
of SLS . The message m is a key message if m.t appears the
same number of times in every sequence.

The preprocessing provides two benefits. First, it removes
irregular log messages from loops, conditional choices, and
periodical background tasks. Such messages are irrelevant to
the task workflow and would introduce excessive possibili-
ties when CloudSeer checks the interleaved log sequences.
We consider that keeping only key messages is sufficient and
efficient for the monitoring purpose. Second, the result se-
quences bring out in-sequence message interleaving caused
by asynchronous operations. Capturing and modeling such
interleaving is important for recovering the task workflow.

3.2 Mining Temporal Dependencies
Given a set of preprocessed log sequences SLS , temporal
dependencies describe the order relation in which collabo-
rative services generate log messages. We define the follow-
ing two types of temporal dependencies over log templates
{t1, t2, ..., tn} shared by sequences in SLS : (1) a strong de-
pendency ti

strong−−−−→ tj iff tj is always next to ti for each of
their occurrences in SLS ; (2) a weak dependency ti

weak−−−→ tj
iff ti always happens before tj in SLS , but it is not nec-
essarily followed by tj immediately. Any pair of ti and tj



not having the two dependencies is considered to not have
any specific order. For example, in Figure 2, the messages
“accepted” and “POST” have a strong dependency, since
both the occurrences 1 → 3 and 2 → 4 follow one spe-
cific order. On the other hand, the message “Scheduling”
(5 and 6) always leads “Starting” and “GET” (5→ 8→ 9
and 6 → 7 → 10), but the latter two messages do not fol-
low a specific order. Therefore, the messages “Starting”
and “GET” have weak dependencies with “Scheduling.”
The weak dependencies imply that the execution becomes
asynchronous after the message “Scheduling” and before
“Starting” and “GET.”

To mine temporal dependencies, this step consists of
three parts. It first enumerates and collects all pairs of
log templates for each sequence in SLS . For example,
given a sequence 〈a, b, c〉, this step enumerates pairs of
(a, b), (a, c), (b, c). Then it classifies all collected pairs into
strong and weak temporal dependencies based on their defi-
nition. Finally, it performs a reduction of transitive relations
on the classified temporal dependencies. The transitive re-
lations are the result of enumerating all message pairs. In
particular, for any dependencies a→ b and b→ c before the
reduction, there must be a dependency a → c. The reduc-
tion removes such dependencies as a → c to keep the result
dependencies minimal.

3.3 Constructing Automata
This step constructs a task automaton that encodes the
mined temporal dependencies. A task automaton is a sep-
tuple (Q,Σ,∆, q0, F,Qf , Qj) where: (1) Q is a set of states
of a task execution; (2) Σ is a set of log message templates;
(3) ∆ is a transition function Q × Σ → P(Q) based on the
temporal dependencies; (4) q0 is an initial state; (5) F is a set
of final states; (6) Qf ⊂ Q contains fork states, which lead
transitions to multiple other states by messages not depen-
dent on each other but having weak temporal dependencies
with the previous message; (7) Qj ⊂ Q contains join states,
to which multiple states converge on a message having weak
temporal dependencies with multiple previous messages.

The construction of a task automaton is as follows. All
log templates in the temporal dependencies constitute the
input set Σ. Each input in Σ is assigned a state, indicating
the state after taking the input. Then, the assigned states with
the mined dependency pairs constitute transitions in ∆. To
determine the first transition from the initial state q0, this
step looks up an input that does not depend on any others.
To determine the final states F , the fork states Qf , or the
join states Qj , this step looks for the states without any
outbound transitions, have multiple outbound transitions, or
have multiple inbound transitions in ∆. For each fork state,
this step adds a self-loop to the transition function to allow
state forking, as shown in the rows 7 and 8 of Table 1. In
addition, we limit a fork state to take self-transitions at most
the number of its outbound transitions, so that the automaton
only processes a finite length of log sequence.

Algorithm 1: Checking Individual Sequences
Input: a log message m; an automaton group G, empty by default
Output: the updated automaton group G after its automaton

instances consume the message m
Global: a set of task automata M for different tasks

1 G′ ← CopyInstances(G);
2 if G′ is empty then
3 G′ ← InitializeInstances(M);
4 G← {};
5 foreach a in G′ do
6 if TryInputMessage(a, m.t) is true then
7 G← G ∪ {a};
8 return G;

4. Checking Interleaved Log Sequences
In the online checking stage, CloudSeer uses task automata
from the previous offline modeling stage to check inter-
leaved log sequences. The input and output of this checking
stage are as follows. CloudSeer takes one log message at a
time from a log stream. The input message belongs to one of
some interleaved log sequences being generated. Based on
the task automata, CloudSeer outputs (1) an accepting au-
tomaton instance, if the last message completes a correct log
sequence; (2) an erroneous automaton instance, if the last
message meets problem-detection criteria; or (3) no output,
indicating more log messages are expected.

We start from the basic case for individual log sequences
assuming tasks are executed one by one. Then we relax this
assumption and present the full checking algorithm. Finally,
we discuss our problem detection criteria.

Basic case: individual sequences. CloudSeer needs to
choose a correct automaton from multiple task automata to
check incoming log messages belonging to the current log
sequence. Since CloudSeer takes one log message at a time,
it does not know the right choice of automaton for sure
until an automaton accepts the last message, completing the
current log sequence.

Algorithm 1 shows the checking algorithm for individual
sequences. Its main idea is using an automaton group G to
keep track of all possible automata for the sequence being
checked. G initially contains instances created from a global
set of task automata M (Lines 2 to 3). Each automaton
instance a in G represents one possible task, and it maintains
its own state transitions based on input messages.

For each log message m with the current automaton
group G, the algorithm finds the automaton instances that
make state transitions with m (Lines 5 to 7, determined by
the function TryInputMessage that lets an instance decide
whether it can consume m), and it passes them to the next
invocation by returning the updated G. A final state of any
instance in the result G indicates the completion of checking
a log sequence. On the other hand, an empty G indicates that
none of the automaton instances can consume m.

Checking interleaved sequences. We extend the check-
ing algorithm shown in Algorithm 1 in two ways. First, the



Algorithm 2: Checking Interleaved Sequences
Input: a log message m
Output: an accepting or erroneous automaton instance, if the

message m completes a correct log sequence, or meets an
error criterion; no output otherwise

Global: a set of identifier sets I; a set of automaton groups G; a
relation set R : I× G

1 Sid ←GetIdentifierValues(m.Sv);
2 Imax ←ComputeMaxIdentifierSets(Sid, I);
3 Gmax ←GetAutomatonGroups(R, Imax);
4 Gafter ← {};
5 foreach G in Gmax do
6 G′ ← Apply Algorithm 1 with m and G;
7 if G′ is not empty then
8 Gafter ← Gafter ∪ {(G,G′)};
9 if |Gafter| = 1 then

10 G,G′ ←Single(Gafter);
11 ID ←GetAssociatedIdentifierSet(R, G);
12 R← R \ {(ID,G)};
13 ID′ ←ExpandOrCreateIdentifierSet(ID, m.Sv);
14 R← R ∪ {(ID′, G′)};
15 else if |Gafter| > 1 then
16 NID ←CreateIdentifierSet(m.Sv);
17 G′ ← {};
18 foreach (G,G′) in Gafter do
19 ID ←GetAssociatedIdentifierSet(R, G);
20 NID ←ExpandOrCreateIdentifierSet(NID, ID);
21 G′ ← G′ ∪ {G′};
22 R← R ∪ [{NID} × G′];
23 else
24 Divergence Recovery and Problem Detection
25 a, I,G, R← PruneIfAcceptingOrErroneous(I, G, R, Gafter);
26 return a or None;

new algorithm keeps multiple automaton groups simultane-
ously to track interleaved sequences, where each automaton
group tracks the log messages from one task execution. Sec-
ond, to avoid exhaustively trying every incoming message
on all automaton groups, the algorithm associates an identi-
fier set with each automaton group, which helps determine
the proper automaton group to use on-the-fly.

An identifier set is a signature for an automaton group,
and it is generated based on the log sequence that has been
checked by the automaton group. During the growth of a se-
quence, its corresponding identifier set incrementally stores
identifiers appearing in log messages of the sequence. Iden-
tifier sets serve as the key to determine whether an incoming
message belongs to a sequence. This is based on an observa-
tion that a log message is likely to belong to a sequence with
whose identifier set the message shares the greatest number
of common identifiers. Since each automaton group is as-
sociated with an identifier set, the checking algorithm can
find the most likely automaton group(s) to consume an input
message without trying all the groups.

Algorithm 2 shows the detail of checking interleaved log
sequences. The algorithm first gets the automaton group(s)
associated with the identifier set(s) having the greatest num-
ber of common identifiers with the incoming message m
(Lines 1 to 3). Then the algorithm uses Algorithm 1 with

the selected automaton groups to check m (Lines 4 to 8).
The checking may result in three cases: (1) only one automa-
ton group left (the branch from Lines 9 to 14); (2) multiple
automaton groups taking m (the branch from Lines 15 to
22); or (3) none of the selected automaton groups to take m
(the branch from Lines 23 to 24). After handling the three
cases, the algorithm looks for and returns any automaton in-
stance that is in the accepting state, or identifies a potential
problem. The algorithm also cleans up related identifier sets,
automaton groups, and their relations (Lines 25 to 26).

We describe the handling of the three cases below:
Case (1): decisive checking. When there is only one

decisive automaton group, which shares the greatest number
of common identifiers with the incoming message and can
consume the message, the algorithm applies the steps from
Lines 10 to 14 to update the associated identifier set and
the relation between the set and the group. In particular,
Line 13 expands the set ID by including new identifiers
in the message m, i.e., ID ∪ m.Sv . If the set is associated
with multiple automaton groups besides the group taking the
message m, the algorithm creates a new identifier set from
the original one, and it then expands the new set with new
identifiers in m, i.e., two sets ID and ID ∪m.Sv . Upon the
acceptance of an automaton instance, Line 12 removes the
old relation between the original automaton group and its
associated identifier set, and Line 14 adds the new relation.

Case (2): brute force and heuristics. There can be mul-
tiple automaton groups from Lines 4 to 8. These automaton
groups all share the same greatest number of identifiers with
the incoming message and can consume the message, but
they may have different identifier sets. The algorithm cannot
decisively determine an automaton group among all the cho-
sen ones, so it has to keep all of them before and after tak-
ing a message to explore different possibilities. For example,
suppose there are two automaton groups G1 and G2 with
identifier sets ID1 and ID2, both of which share the most
identifiers with an incoming message m. G1 and G2 make
their own state transitions to G′

1 and G′
2 by taking the mes-

sage m. The algorithm keeps (ID1, G1) and (ID2, G2), and
it adds (ID1∪ID2∪m.Sv, G

′
1) and (ID1∪ID2∪m.Sv, G

′
2)

to the relation set R. When the message after m comes in,
the extended identifier set (ID1 ∪ ID2 ∪ m.Sv) gives G′

1

and G′
2 an equal chance to check the message. As a result,

the algorithm tracks both possibilities: G′
1 and G2, or G1

and G′
2. Upon the acceptance of an automaton instance, the

algorithm removes all automaton groups, identifier sets, and
relations that are related to the other possibilities.

To reduce the number of possible automaton groups to
track, we introduce two heuristics to deal with the two causes
of having multiple automaton groups. First, if two identifier
sets share the same number of identifiers with an incom-
ing message, the function ComputeMaxIdentifierSets also
computes the numbers of identifiers that are different be-
tween these sets and the message, and it selects the set with
the least difference. Second, if there are multiple automaton



groups associated with the same identifier set, the function
GetAutomatonGroups randomly selects one group when it
finds multiple equivalent groups. Two automaton groups are
equivalent if they contain automaton instances of the same
kind, and the instances of the same kind are in the same state.

Case (3): divergence recovery. Divergences during the
checking on the message m result in an empty set returned
from Algorithm 1. Such divergences may not indicate execu-
tion problems under the following four causes. We provide
a recovering heuristic for each of these causes, and these
causes are prioritized in the ascending order based on our
knowledge of their recovering cost and side effect: (a) m is
not in the Σ of any automaton; (b) m starts a new log se-
quence, so there is no corresponding automaton group; (c)
the chosen identifier set is likely not correct, so the automa-
ton group is unable to take m; and (d) m does not arrive in
the order defined by the modeled temporal dependencies.

CloudSeer applies the recovering heuristics one by one
until it recovers. For the cause (a), the algorithm allows un-
recognizable messages to pass through. Such messages are
usually not of interest to the checking process. If an error
message appears, the error-message criterion described be-
low can capture it. For the cause (b), Algorithm 1 is applied
with an empty automaton group to create new automaton in-
stances for tracking a new sequence.

If the first two heuristics cannot resolve the divergence,
it is likely that the algorithm has chosen a wrong automaton
group (the cause (c)). Such situation can sometimes happen
if two interleaved log sequences share some identifiers, e.g.,
the same user boots two VMs at the same time. The algo-
rithm tries another automaton group that has less common
identifiers than the best match to take the message.

The unexpected message reordering may fail all other
heuristics (the cause (d)). In this situation, a message B ar-
rives earlier than another message A, which should not hap-
pen according to the dependency A→ B from the modeling
stage. There are two possible reasons for such reordering:
A → B is a false dependency or a message-delivery delay
causes A to arrive late. We consider that it is unnecessary to
determine the particular reason in CloudSeer’s usage sce-
nario, so we treat all such reordering as the result of false
dependencies encoded in task automata and remove such de-
pendencies from the automaton instances.

Figure 4 shows an example of the removal step. The
graph on the left side shows an automaton with a false
temporal dependency B → C. To remove B → C from the
automaton and make it accept a new sequence ACBD, the
algorithm first removes the state transition from q2 to q3, and
it adds two new transitions q1→ q3 and q2→ q4 (shown by
dashed arrows in the right-side graph of Figure 4). The state
q1 thus becomes a fork state, and q4 becomes a join state.
These changes reflect two weakened dependencies A → C
and B → D as the results of removing B → C.

Problem Detection. We implement two simple criteria in
CloudSeer to detect common execution problems. The two
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Figure 4. Removing Dependencies

criteria are based on two common manifestations of execu-
tion problems: (1) the presence of error messages, indicating
task failures; (2) the absence or delay of messages, indicat-
ing task failures or performance degradation.

Error-message criterion is in effect when an error mes-
sage (determined by its logging level) arrives, and the check-
ing algorithm in Algorithm 2 results in a state of divergence,
as shown in Line 24. This criterion then applies the func-
tions ComputeMaxIdentifierSets and GetAutomatonGroups
to identify and output the most likely automaton group that
may be associated with the error message.

Timeout criterion marks any automaton groups that do
not take any messages within a specified time period. The
marked automaton groups become the outputs of Algo-
rithm 2. The timeout value may vary in different systems
and configurations. Determining such values is not in the
scope of this paper, and we leave it for future work.

5. Evaluation
We present a series of systematic experiments conducted on
OpenStack to evaluate the following aspects of CloudSeer.

Checking Accuracy. The accuracy that CloudSeer cor-
rectly checks interleaved log sequences is fundamental to
CloudSeer’s problem detection. We measure the accu-
racy based on logs collected from correct task executions.
CloudSeer is supposed to recognize and accept all log se-
quences in the correct logs. Therefore, any nonacceptance
would indicate inaccuracies.

Efficiency. To show CloudSeer’s capability of working
in the monitoring scenario, we measure the throughput of
CloudSeer consuming log messages and present how the
identifier-based heuristic affects the checking efficiency.

Capability of Problem Detection. With typical execu-
tion problems that are injected to certain weak points in the
OpenStack system, we show how well CloudSeer detects
them and provides automaton instances as useful informa-
tion related to the detected problems.



Task Description Msgs Trans
Boot Create a new VM. 23 34
Delete Delete a VM. 9 9
Start Start a stopped VM. 7 7
Stop Stop a running VM. 6 6
Pause Pause a running VM in memory. 7 7
Unpause Bring back a paused VM. 7 7
Suspend Suspend a running VM to disk. 6 6
Resume Bring back a suspended VM. 7 7

Table 2. VM Tasks for Experiments

5.1 Test Bed
We deploy an OpenStack instance in a five-node cluster
as the test bed for our experiments. The OpenStack ver-
sion is Havana. In our deployment, there are one controller
node, one network node running network-related services,
and three compute nodes. We follow the installation guide
of OpenStack [5] to deploy this instance.

We set the logging levels for all nova service compo-
nents to INFO. Therefore, nova-api, nova-scheduler,
and nova-compute generate INFO-level messages for VM-
related tasks. Such a setting is typical for deployment, and
our evaluation suggests that INFO level is sufficient to pro-
vide workflow information without imposing excessive bur-
dens on servers.

We deploy our prototype of CloudSeer alongside Elas-
ticsearch [7], which is a central log database, on the con-
troller node. To centralize logs from OpenStack services,
we deploy Logstash [9] on each server node. Logstash
parses log messages generated by OpenStack services on
each server node and sends the parsed messages to both
CloudSeer and Elasticsearch on the controller node. While
Logstash instances on multiple server nodes create a log
stream, Elasticsearch stores all log messages in the stream.
We use the log stream and stored log messages in different
experiments.

5.2 Workload Generator
To evaluate CloudSeer with interleaved log sequences, we
implement a workload generator that simulates multiple
users submitting OpenStack tasks concurrently through the
command-line interface. This generator can create various
workloads varying in the number of concurrent users and
the number of tasks submitted by each user.

The generator uses eight primitive and typical VM-
related tasks to create workloads, and they are listed in
Table 2. To obtain the automaton for each task, we keep
running the task and applying the modeling algorithm on the
output logs, until logs from any subsequent task executions
do not change the result automaton. In this way, the result
automaton is likely to be concise regarding key log mes-
sages and complete regarding relations between messages.
The number of runs for modeling each task ranges from 200
to 800, depending on the extent of nondeterminism within
task executions. In Table 2, the column “Msgs” shows the
number of messages in the log sequence of each execution

Grp. Data Sets Users Single UID? Total Tasks
1 1− 10 2 N 1600
2 11− 20 3 N 2400
3 21− 30 4 N 3200
4 31− 40 2 Y 1600
5 41− 50 3 Y 2400
6 51− 60 4 Y 3200

Table 3. Experiments for Accuracy and Efficiency

Injection Point Type Responsibilities
AMQP-Sender Net Request RPCs to services that control VMs,

e.g., nova-scheduler and nova-compute.
AMQP-Receiver Net Receive and process RPC requests.
Image-Create I/O On each nova-compute server node, create

a new VM image from an image template.
Image-Delete I/O When destroying a VM, delete all related files.
WSGI-Client Net Send HTTP-based requests to query image

information stored by glance services.
WSGI-Server Net Process queries of image information.

Table 4. Execution Points for Failure Injection

after preprocessing, and the column “Trans” shows the num-
ber of transitions in the corresponding automaton.

For each simulated user, the generator randomly popu-
lates tasks by the following regular expression:
(Boot (StopStart | PauseUnpause | SuspendResume)∗ Delete)+

This expression produces multiple task groups, starting
with a “boot” task and ending with a “delete” task. Within
each task group, there can be multiple pairs of “stop/start,”
“pause/unpause,” and “suspend/resume” tasks on the same
VM. When booting a VM, we use CirrOS [6] as the guest
system. To ensure the completion of each submitted task,
we set each user to wait 15 seconds between two tasks.

5.3 Experiment Design
We design six groups of experiments (shown in Table 3) to
evaluate checking accuracy and efficiency of CloudSeer.
These experiments test two potential factors that may affect
the results of accuracy and efficiency: the number of tasks
being executed concurrently, and the diversity of identifiers
appearing in logs. We control the first factor by setting vari-
ous concurrent users in the workload generator (shown in the
column “Users”). To control the second factor, we set the
generator to simulate users with identical or different user
identifier (shown in the column “Single UID?”) when sub-
mitting tasks. We repeat the experiment of each combination
of the two factors for 10 times to produce different combi-
nations of interleaved log sequences (shown in the column
“Data Sets”). Each simulated user in an experiment is set to
submit 80 tasks, resulting in the total numbers shown in the
column “Total Tasks.”

The evaluation of checking accuracy and efficiency re-
quires measuring multiple aspects of CloudSeer’s checking
algorithm in a repeatable way. Therefore, we use the same
set of stored log messages to feed CloudSeer multiple times
to ensure consistent measurements.

To show the capability of problem detection, we ran-
domly inject execution problems to the test bed to mimic



Grp. Acc. Range Median % Interleaved (≥ 2, 3, 4)
1 93.24%− 100.0% 96.83% 48.50%
2 96.82%− 100.0% 98.09% 65.00%, 31.17%
3 95.78%− 98.72% 97.22% 74.34%, 48.63%, 22.84%
4 96.15%− 97.47% 97.47% 49.00%
5 94.16%− 99.37% 98.07% 64.67%, 32.71%
6 92.08%− 97.87% 96.51% 80.12%, 55.59%, 30.06%

Table 5. Experiment Results for Accuracy

the real-world scenario, and let CloudSeer monitor the test
bed for the injected problems. We configure the workload
generator to use four users to submit tasks concurrently. In
addition, we configure the timeout value of task automata to
be 10 seconds based on the performance of our test bed.

We choose six execution points to inject execution prob-
lems and apply CloudSeer to detect them. Table 4 shows
these injection points and their major responsibilities for
tasks in the scope of our experiments. These injection points
are potentially error-prone because of network and I/O, and
they reflect general and typical failure patterns that have
been well studied [17, 19, 20]. During the experiment, we
enable these injection points one at a time and set every en-
abled injection point with a 25% chance to trigger an ex-
ecution problem. The problem is chosen randomly by the
injection point from: (a) delaying execution by a signifi-
cant amount of time to simulate a performance problem, (b)
aborting the current thread to simulate an unexpected excep-
tion, and (c) ignoring a network-based request or returning
an incorrect file-system status, to simulate network or I/O
specific problems. We use the workload generator to keep
running tasks until each injection points triggers 10 execu-
tion problems. Then we examine whether the problems re-
ported by CloudSeer match with the injected ones.

5.4 Checking Accuracy
Since there are nearly 15,000 log sequences from the ex-
periment, it is impractical to manually determine whether
CloudSeer accurately checks each of them with the correct
automaton instance. Instead, we approximate the checking
accuracy using the following formula:

Accuracy = 1−
# of Not-Accepted Sequences

# of Interleaved Sequences

We only use the number of interleaved log sequences
from parallel task executions in the denominator. False tem-
poral dependencies are the only cause of checking inaccura-
cies in sequential executions, because other checking heuris-
tics are not in effect. As our task modeling is sufficient for
sequential executions, we exclude them from the accuracy
calculation for a close approximation. Since we cannot pre-
cisely control whether and how OpenStack executes paral-
lel task requests, we estimate the number of interleaved se-
quences caused by parallel executions using the number of
automaton instances simultaneously tracked by CloudSeer.

We determine the number of not-accepted sequences by
counting automaton instances that are not in accepting states.
We also compare the number of instances of each task with

Grp. Ave. Msgs Ave. Time Ave. 1k % Decisive
1 2164 3.91s 1.81s 83.13%
2 2990 6.25s 2.09s 80.76%
3 3849 8.98s 2.33s 78.18%
4 2158 4.32s 2.00s 80.12%
5 2989 7.37s 2.47s 75.48%
6 3820 11.57s 3.03s 71.43%

Table 6. Experiment Results for Efficiency

the number of tasks populated by the workload generator. If
they do not match, we manually check related automaton
instances to identify accepted instances that may happen
to accept messages from multiple sequences, and we count
them as not-accepted ones. However, we cannot identify
the case where an accepted instance may happen to take
messages from multiple sequences of the same kind of task.

Table 5 presents the experiment results. The column
“Acc. Range” gives the accuracy ranges showing the worst
and the best results in each experiment group, and the col-
umn “Median” gives the median values. The column “%
Interleaved” shows the average percentages of interleaved
sequences in each experiment group. For the groups 1 and
4, the percentages are of interleaved sequences from at least
two executions being in parallel (shown by the first percent-
age in each row). For the groups having more than two users,
we also show the percentages of interleaved sequences from
at least three and four executions being in parallel (shown
by the second and the third percentages in each row).

The results suggest that CloudSeer is accurate enough
to check most interleaved log sequences. Among six groups
of experiments, the worst accuracy is 92.08% in one exper-
iment of the group 6, while two experiments in the groups
1 and 2 result in a perfect accuracy. Based on the data
in Table 5, we find no substantial links between the accu-
racy and the number of paralleled task executions or the
diversity of identifiers. On the other hand, there are about
271 sequences that are for sure not accurately checked by
CloudSeer. They end up not being accepted or being ac-
cepted by wrong automaton instances. Such inaccuracies are
caused by message-interleaving patterns that invalidate the
heuristics on identifier sets and divergence recovery.

5.5 Efficiency
Table 6 presents the results of efficiency by measuring the
checking time for each data set listed in Table 3. The column
“Ave. Msgs” shows the average number of messages pro-
duced by each experiment group. The columns “Ave. Time”
and “Ave. 1k” present the average checking time and the
average time per 1000 messages in each experiment. The
column “% Decisive” presents the percentage of decisive
checking led by the identifier-based heuristic, i.e., case (1)
in Algorithm 2, among all cases. These results reflect the
throughput of the checking algorithm of CloudSeer (Algo-
rithm 2), but not the overhead of Logstash delivering logs
from each server node to the centralized location.



Injection Point Tasks D A S Detected F/P F/N
AMQP-Sender 45 3 3 4 9 0 1
AMQP-Receiver 85 3 5 2 10 1 0
Image-Create 256 3 5 2 *10 3 1
Image-Delete 240 1 3 6 8 3 2
WSGI-Client 208 3 3 4 10 3 0
WSGI-Server 87 5 3 2 8 1 **2

*. CloudSeer caught an unplanned and unexpected performance problem.
**. One of the injected problems does not reflect on logs.

Table 7. Detection Results

Overall, the results suggest a satisfactory checking effi-
ciency regarding the throughput and reveal two key obser-
vations that are related to the achieved efficiency. First, the
identifier-based heuristic is effective in improving the over-
all checking efficiency. The higher the percentage of decisive
checking is, the less the checking time is needed. In partic-
ular, comparing groups with similar numbers of log mes-
sages, e.g., groups 1 and 4, we conclude that the throughput
is proportional to the percentage of decisive checking. Sec-
ond, both the number of parallel executions and the diver-
sity of identifiers can affect the efficiency. The diversity of
identifiers directly affects the chance of applying the expen-
sive brute-force and divergence-recovery algorithms, as the
throughputs of groups 4, 5, 6 are lower than those of groups
1, 2, 3. Subtly, the number of parallel executions affects the
number of candidate identifier sets, which further increases
the chance of not having decisive checking in the first place.

5.6 Capability of Problem Detection
Table 7 presents the detection results. The column “Tasks”
shows the number of tasks running for each injection point,
as we keep running OpenStack tasks until each point triggers
10 problems. The execution problems come randomly from
three types: column “D” for delaying execution, column “A”
for aborting execution, and column “S” for network or I/O
specific problems. The column “Detected” shows the num-
ber of true problems detected by CloudSeer. The columns
“F/P” and “F/N” are false positives and false negatives.

Among all 60 injected problems, 17 of them have related
error messages. The other 43 problems do not lead to any
error messages. Within these 43 problems, 25 of them are
execution failures, and the other 18 are performance prob-
lems that are not supposed to generate any error messages.

CloudSeer detects 16 problems by the error-message
criterion and 38 problems by the timeout criterion. These re-
sults show a precision of 83.08% and a recall of 90.00%. To
verify true positives and investigate causes of false positives
and false negatives, we manually check relevant automaton
instances produced by CloudSeer and the task-submission
logs by the workload generator. We also check the injection
history that records injection time and VM information.

We identify two major factors affecting the precision
and recall of CloudSeer reporting execution failures. The
checking accuracy is by nature a major reason, which causes
both false positives and false negatives. In Table 7, eight
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Figure 5. Normal and Reordering Cases

false positives and two false negatives are the results of in-
accurate checking. We find that the major cause of such
inaccuracies is message ordering missed by task automata
due to insufficient modeling.

Figure 5 presents a simplified but representative case of
message reordering. A1 and A2 represent automaton ex-
cerpts for the tasks “Stop” and “Start.” Both automata can
consume the messages m1 and m2, but in different orders.
The concrete messages for m1 and m2 are “Lifecycle
event” from a callback registered with the VM hypervisor
and “Instance destroyed” from the nova-compute ser-
vice. For a normal log sequence m0,m1,m2,m3 (bottom
left of Figure 5), CloudSeer would choose A1 as the au-
tomaton for the sequence after checking messages followed
by m3. However, m1 → m2 turns out to be a false de-
pendency, where the two messages could be sometimes re-
ordered when the server workload increases (bottom right of
Figure 5). Coincidentally, it happens that A2 is able to recog-
nize the reordered messages. Therefore, CloudSeer would
keep A2 instead of A1 for the sequence without trigger-
ing divergence-recovery strategies. Consequently, A2 could
trigger a timeout because the expected message m4 never
comes, leading to a false positive. Meanwhile, CloudSeer
may find another automaton instance to consume the unhan-
dled message m3, leading to a potential false negative if the
instance should have triggered a timeout. A straightforward
mitigation of such reordering is to involve manual efforts in
refining the task automata once false dependencies are iden-
tified during the checking process.

In addition, multiple error messages for a single execu-
tion problem lead to three false positives and three false
negatives. Our error-message criterion assumes that each ex-
ecution problem would be associated with only one error
message. However, we find that occasionally different ser-
vices may generate error messages at the same time for the
same injected problem. In such cases, after associating an er-
ror message with an automaton instance, CloudSeer stops
choosing that instance to check any other messages. Conse-
quently, if identifier values in the extra error messages match
with existing identifier sets, CloudSeer may find other au-
tomaton instances to associate with, which leads to false
positives. Any falsely associated automaton instances would
lose the capability of detecting problems of their own log
sequences, so potentially lead to false negatives.



6. Related Work
In essence, we contribute an approach that monitors inter-
leaved logs and reports potential execution problems in an
automated lightweight manner. The approach uses the task
automaton as the workflow abstraction to provide context in-
formation out of unstructured logs for further problem diag-
nosis. Based on our main contribution, we differentiate our
approach from existing work as follows.

Mining workflow models from logs. Recent work [14,
15, 22, 23, 28] uses logs or traces to create workflow mod-
els for software testing, debugging, and the understanding of
system behaviors. Notably, CSight [14] creates finite state
machines by mining temporal invariants in logs of concur-
rent systems. Lou et al. [23] propose an intuitive automaton
model and corresponding mining algorithms for reconstruct-
ing concurrent workflows from event traces.

Compared to such work, CloudSeer specifically ad-
dresses the log-monitoring problem using workflow mod-
els. To make workflow models suitable for both monitoring
and system-behavior understanding that helps problem di-
agnosis, we adapt the idea of mining workflow models by
tailoring such models to be lightweight specifications (i.e.,
task automata). With the tailored models, CloudSeer can
effectively and efficiently check interleaved log sequences
for the purpose of monitoring; meanwhile, it can also output
monitoring results represented in workflow models that are
understandable by administrators. Furthermore, we add on-
the-fly refinement to task automata in order to mitigate false
dependencies from mining and message-delivery delays in
the production environment.

Log analysis for distributed systems. Some log-analysis
approaches apply data-mining and machine-learning tech-
niques on logs of distributed systems [16, 18, 21, 24, 25, 29].
Some of these approaches also focus on workflow-based
analysis. Fu et al. [18] proposes an approach that learns
workflow models from unstructured logs and uses the mod-
els to detect performance anomalies in new input logs. The
Mystery Machine [16] relies on a tremendous amount of log
data to infer dependency models for critical-path analysis.

Compared to these approaches, CloudSeer addresses the
following two key points. First, in the monitoring scenario
that CloudSeer targets, the log-message set for analysis
keeps growing and changing. Such dynamics make these
techniques tend to be unstable and inefficient to produce
results, because they rely on existing offline logs in which
there are sufficient data points representing both normal
and abnormal executions. On the other hand, CloudSeer
separates the analysis into offline and online phases. The
offline phase produces task automata as stable models for
the ground truth of correct-execution logs. Then the online
phase leverages the models to identify partial log sequences
and look for potential problems along the growing of logs.

Second, some of the workflow-based approaches require
a unique and global identifier for each request. As we dis-

cussed in Section 2, although the use of identifiers in logs
is ubiquitous, there is usually no single and unique iden-
tifier that is propagated across all distributed components.
In CloudSeer, we lift the requirement of such unique and
global identifiers by introducing the identifier-based heuris-
tics. The heuristics work on-the-fly to associate multiple
identifiers that should belong to the same log sequence, but
are used by different distributed components.

In addition, lprof [32] is a request-flow profiler for dis-
tributed systems. It reconstructs request flows from logs and
assists the diagnosis of performance anomalies. lprof relies
on static analysis on Java bytecode to identify logging infor-
mation, such as request identifiers for attributing log mes-
sages to flows. To the contrary, CloudSeer is language-
agnostic and complements lprof on systems where static
analysis is tedious or difficult to implement.

Log-based failure diagnosis. Insight [26] and Sher-
Log [30] use error logs and other artifacts, such as source
code, to infer or reproduce failure paths. These failure-
diagnosis techniques work on a single-thread or single-
request basis. CloudSeer may be beneficial to these tech-
niques when being applied to complex systems, because
CloudSeer can provide abstracted log sequences including
erroneous ones from parallel task executions.

Distributed tracing frameworks. There are frameworks
targeting at tracing large-scale distributed systems [4, 12,
13, 27]. These frameworks require instrumentation in spe-
cific system components, e.g., network library, to generate
traces for further analysis. Compared to these frameworks,
CloudSeer purely works on logs that are readily available
in existing running systems, so it does not require any spe-
cial instrumentation. Since logging is a common practice in
developing large-scale systems, CloudSeer is highly usable
on existing production systems with general logs.

7. Conclusion
We present CloudSeer, a lightweight non-intrusive ap-
proach for log-based workflow monitoring in cloud infras-
tructures. CloudSeer effectively and efficiently checks in-
terleaved log sequences for execution problems with or with-
out error log messages. It outputs task-automaton instances
representing possible erroneous sequences as hints for fur-
ther diagnosis. Our experiments on OpenStack show that
CloudSeer’s checking accuracy is high on interleaved logs,
with a satisfactory efficiency for the online monitoring sce-
nario. The experiment with injected execution problems fur-
ther shows that CloudSeer is capable for online execution-
problem detection.
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